Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 11(6)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242593

RESUMO

In recent years, the pursuit of new polymer materials based on renewable raw materials has been intensified with the aim of reusing waste materials in sustainable processes. The synthesis of a lignin, styrene, and butyl acrylate based composite was carried out by a mass polymerization process. A series of four composites were prepared by varying the amount of lignin in 5, 10, 15, and 20 wt.% keeping the content of butyl acrylate constant (14 wt.%). FTIR and SEM revealed that the -OH functional groups of lignin reacted with styrene, which was observed by the incorporation of lignin in the copolymer. Additionally, DSC analysis showed that the increment in lignin loading in the composite had a positive influence on thermal stability. Likewise, Shore D hardness assays exhibited an increase from 25 to 69 when 5 and 20 wt.% lignin was used respectively. In this same sense, the contact angle (water) measurement showed that the LEBA15 and LEBA20 composites presented hydrophobic properties (whit contact angle above 90°) despite having the highest amount of lignin, demonstrating that the interaction of the polymer chains with the -OH groups of lignin was the main mechanism in the composites interaction.

2.
J Enzyme Inhib Med Chem ; 33(1): 397-404, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29363372

RESUMO

Shikimic acid (SA) pathway is the common route used by bacteria, plants, fungi, algae, and certain Apicomplexa parasites for the biosynthesis of aromatic amino acids and other secondary metabolites. As this essential pathway is absent in mammals designing inhibitors against implied enzymes may lead to the development of antimicrobial and herbicidal agents harmless to humans. Shikimate dehydrogenase (SDH) is the fourth enzyme of the SA pathway. In this contribution, a series of SA amide derivatives were synthesised and evaluated for in vitro SDH inhibition and antibacterial activity against Escherichia coli. All tested compounds showed to be mixed type inhibitors; diamide derivatives displayed more inhibitory activity than synthesised monoamides. Among the evaluated compounds, molecules called 4a and 4b were the most active derivatives with IC50 588 and 589 µM, respectively. Molecular modelling studies suggested two different binding modes of monoamide and diamide derivatives to the SDH enzyme of E. coli.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Escherichia coli/enzimologia , Ácido Chiquímico/farmacologia , Oxirredutases do Álcool/metabolismo , Relação Dose-Resposta a Droga , Modelos Moleculares , Conformação Molecular , Ácido Chiquímico/síntese química , Ácido Chiquímico/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...